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Flaw tolerance in ceramics with rising crack 
resistance characteristics 
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The stabilizing influence of increasing toughness with crack size associated with a cumulative 
closure-stress process (R-curve, or T-curve) on the strength properties of brittle ceramic 
materials is analysed. Three strength-controlling flaw types are examined in quantitative detail: 
microcracks with closure-stress history through both the initial formation and the extension in 
subsequent strength testing; microcracks with closure stresses active only during the sub- 
sequent extension; spherical pores. Using a polycrystalline alumina with pronounced T-curve 
behaviour as a case study, it is demonstrated that the strength is insensitive to a greater or 
lesser extent on the initial size of the flaw, i.e. the material exhibits the quality of "flaw 
tolerance". This insensitivity is particularly striking for the flaws with full closure-stress history, 
with virtually total independence on initial size up to some 100#m; for the flaws with only 
post-evolutionary exposure to the closure elements the effect is less dramatic, but the strength 
characteristics are nevertheless significantly more insensitive to initial flaw size than their 
counterparts for materials with single-value toughnesses. The implications of these results to 
engineering design methodologies, as expressed in conventional R-curve constructions, and to 
processing strategies for tailoring materials with optimal crack resistance properties, are 
discussed. 

1. I n t r o d u c t i o n  
The mechanical  characterizat ion o f  ceramics con- 
tinues to be based in large part  on the traditional 
not ion o f  a single-valued crack resistance R, (or 
toughness, T) +. An  explicit prediction o f  any theory o f  
strength based on invariant R is that  failure should 
occur spontaneously  from some pre-existent ("Grif-  
fith") flaw when a critical applied stress is reached, 
such that  the strength varies inversely with the flaw 
size. This prediction is the cornerstone o f  nearly all 
non-destructive evaluation of  structural ceramics. It 
has resulted in a strong movement  toward a processing 
phi losophy o f  flaw elimination [1-5], in which system- 
atic efforts are made to remove all potentially severe 
flaws. It is, therefore, not  difficult to unders tand why 
"flaw sensitivity" has remained the most  pervasive 
concept in the entire theory o f  the strength o f  ceramics. 

The recent realization that  many  ceramics display 
an increasing resistance with cont inued crack exten- 
sion [6], so-called R-curve (or T-curve) behaviour,  
requires that this philosophy be re-examined. Materials 
with significant R-curves do not fail spontaneously;  
rather, the critical flaw first grows stably, often over a 
considerable distance, before failure ensues [6-12]. 
This enhanced stability imparts a certain "flaw 

tolerance" to the material, because it is the final, not  
the initial, size that determines the instability. Such 
tolerance is o f  great benefit to the structural designer-7 
because o f  a tendency to increased reliability (increased 
Weibull modulus  [13, 14]) coupled with a reduced 
sensitivity to subsequent damage in service [7]. It also 
offers the attractive prospect o f  early detection by 
non-destructive evaluation [11]. Most  important ly,  
perhaps, it reduces the onus on the ceramics processor 
to fabricate full-density and defect-free materials. 

One of  the most  useful methodologies for examining 
the influence of  R-curve behaviour in the context o f  
flaw instability is that  o f  indentat ion-strength testing, 
where the strength, gin, is determined as a function of  
indentat ion load, P [7, 11, 12]. The R-curve is manifest 
as a deviation of  o- m from the classical P-1'3 depen- 
dency for materials with fixed toughness to a distinctive 
plateau at low indentat ion loads. By deconvolut ing 
the o m (P) data set, the R-curve can be extracted [12]. 
For  materials with strong R-curve characteristics the 
low-load plateau often appears to correspond to the 
strength for failure from processing defects [7]. Despite 
this demonstra ted correspondence there is a wide- 
spread perception in the ceramics fracture mechanics 
communi ty  that indentat ion flaws, by virtue o f  their 
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"artificial" origin, cannot be representative of  the natu- 
ral flaw population; and, therefore, that the latter are 
not subject to the stabilizing influence of the R-curve. 

In this paper we examine the effect of  R-curve 
characteristics on the strength response for some well- 
defined natural flaw types: sharp microcracks of  some 
grain-facet dimensions with a full R-curve history; the 
same but without any R-curve history prior to exten- 
sion; relatively large-scale processing pores. We use 
indentation-strength data on a specific coarse-grained 
alumina to establish the toughness characteristics, and 
invoke a basic R-curve instability condition to deter- 
mine the variation of strength with initial flaw size for 
the various flaw types in this same material. The R- 
curve mechanism in our selected material is identifi- 
able as grain-localized bridging behind the crack tip 
[9-12, 15]; however, our statements concerning the 
mechanics of flaw response will be of  a general 
nature. It will be shown that the natural flaw types do 
indeed exhibit the same kind of tolerance as their 
artificial indentation counterparts. In arriving at this 
conclusion we shall dwell on some of the pitfalls that 
can arise from widely used R-curve constructions that 
represent the flaw size as a negative intercept of  the 
applied loading function on the crack-size coordinate. 

2. Fracture  mechanics  for  f l aws  in 
mater ia ls  w i t h  T-curve 
character is t ics  

2.1. General conditions for crack equilibrium 
and stability 

We begin by defining a general net stress intensity 
factor, K, for a uniformly stressed equilibrium crack 
in a material with R-curve characteristics [6]. We 
write it as the sum of two terms, an external uniform 
applied stress term, K~, and an internal micro- 
structure-associated closure stress term, K~ 

K(c) = K~(c) + K~,(c) = To (la) 

where To is an intrinsic toughness, and c is the crack 
length. Or, alternatively, 

K a ( c  ) = r o J r - r , , ( c ) =  T ( c )  ( l b )  

where T,, = - K , ,  may be regarded as a positive con- 
tribution to the toughness. With this definition of a net 
toughness, T (the stress intensity equivalent, K~ = 7", 
of the resistance term associated with the mechanical 
energy release rate, Gc = R), we adopt the term "T- 
curve" to describe the size-dependent resistance 
characteristic. 

Consider now the condition for instability [6]. For 
T 0 = constant we require the condition 

dK/dc >~ 0 (2a) 

to be satisfied in Equation la, or, equivalently, 

dK~/dc >1 dT/dc (2b) 

in Equation lb. This latter is the tangency condition in 
the familiar R-curve construction. 

We now consider the micromechanics of failure for 
three different flaw types in a material with T-curve 
due to grain-localized bridging at the crack interface, 

3170 

(a) 

-D-D-.@=I?==Q- 

(b) 

- - c  .] 

- - C o  

I 

[ 

-N-t] I N-[J- 

(el 

-[]-[] D-N- 

Figure 1 Schematic drawing of  flaw types considered in this study: 
(a) microcracks with full T-curve history, i.e. subject to bridging in 
initial evolution to c - c 0 as well as in subsequent  extension at 
c > %; (b) microcracks without  any T-curve history in evolution to 
c = c 0 prior to extension, but subject to T-curve in subsequent  
extension c > co; (c) pores subject to T-curve in extension c > h,. 
Squares represent bridging grains, mean separation d: shaded 
squares are activated bridges; open squares are potential bridges. 

a mechanism identified as pertinent to a wide range of 
non-transforming ceramics [9, 15]. 

2.2. Microcracks with full T-curve history 
Consider first a sharp-crack flaw whose inception and 
subsequent evolution takes place entirely in the inter- 
facial closure-stress field responsible for the T-curve, 
Fig. l a. This might be expected to be a most common 
state for microcracks with histories unfavourable to 
the relaxation or destruction of the attendant bridging 
elements; e.g. flaws developed during the final stages 
of, or even after, processing. We seek to characterize 
the response of this flaw type in a subsequent strength 
test, and thence to determine the dependence of the 
strength on the "initial" (pre-test) microcrack size, co. 

Start with the applied stress term, K~,. For a flaw 
normal to the applied tensile stress this term has the 
familiar dependence on the crack size, c [6] 

K~(c) = 4,a~c ~: (c > co) (3) 

where ~, is a geometrical constant ( =  2/~ ~'2 for penny 
cracks). 

The 1,2,, term is derived from the mechanics of  crack- 
interface bridging for penny-shaped cracks [12]. As 
the crack begins to extend from the initial flaw, bridg- 
ing elements are activated over the entire area of  the 
crack beyond intersection with the first bridge at 
c = d, i.e. over most of  the initial, as well as all of the 
subsequent area regardless of the value of Co. The 
attendant restraint stabilizes the crack growth. The 
build-up of interfacial surface traction prevails until, 
at a crack size c = c , ,  the bridges furthermost behind 
the advancing tip begin to rupture, at which point the 
bridge configuration translates with the tip in steady 
state. Derivation of the Kt, term thereby involves inte- 
gration of the underlying (continuum approximation) 



stress-separation function for the bridging elements 
within d ~< c ~< c ,  [10]. Because this bridging term is 
negative, we adopt the T~ notation of Equation lb, 
thus [12] 

T~(c) = O, (c < d) (4a) 

L(c) = ( ro~-  To) 

x {1 - {1 - [ c , ( c  2 - d2)/c(c2, - d2)11/2}3}, 

(d  < c < c , )  (4b)  

T,(c) = T~ - r 0, (c > c , )  (4c) 

with T~o the steady-state value of T. 
Let us emphasize that the derivation of this par- 

ticular relation, or even the identification of bridging 
as the particular T-curve mechanism, are not issues 
here; we use Equation 4 only as a formula for rep- 
resenting the experimentally determined results for 
our chosen alumina test material. Any other analytical 
expression that fits the T-curve data would serve 
equally well to demonstrate the tolerance factor in the 
strength characteristics. 

2 . 3 .  M i c r o c r a c k s  w i t h o u t  f u l l  T - c u r v e  history 
Now consider our second microcrack-type flaw, of the 
same initial size, co, but without any (pre-test) history 
of interracial bridging, Fig. 1 b. Such could be the case 
if bridges were never to be given the chance to form in 
the first place (e.g. flaws associated with incomplete 
densification at an early stage of sintering, grain- 
boundary triple points), or if any post-fabrication 
mechanical, thermal or chemical interaction were to 
destroy existing (i.e. post-evolutionary) bridges. 

The applied stress term, Ka(c), is identical to that of  
Equation 3. However, the microstructure-associated 
T,(c) term differs slightly from Equation 4, by virtue 
of the fact that the bridging stresses are operative only 
over the area of the extended (not the initial) crack. In 
this case the T-curve is displaced along the c-axis, 
corresponding to integration of the stress-separation 
function for the bridging elements between Co + d 
c ~< Co + c ,  [10]. The expressions for T~, may thus be 
obtained by replacing d in Equation 4 with Co + d and 
c, by co + c,  

T~,(c) = O, (c < Co + d) (5a) 

L ( c )  = ( r ~  - To)J1 - (1 - { [ (Co  + c , )  

× [£ - (Co + 4~]}/C[Co + c , / -  (Co + W]'"~)q, 

(co + d < c < co + c , )  (5b) 

T,,(c) = r ~ -  To, ( c >  c 0 + c , )  (5c) 

which now explicitly involves flaw size, co. We empha- 
size here that this T-curve displacement is not equiv- 
alent to a simple shift in origin along the c-axis; i.e. the 
function T~,(Ac), where Ac = c - Co, is not invariant. 

2.4. Crack extension from pores 
For our third flaw type, consider a spherical pore of 
radius b0, from which annular microcracks extend on 
a diametral plane normal to the subsequently applied 
tensile field, Fig. lc. The terminology b0 is adopted 
here to distinguish this kind of defect from a sharp 

crack (a distinction overlooked by some). Pores are 
the most common manifestation of processing in 
which full density is not realised. 

The applied stress term for the pore is no longer of 
the simple form given in Equation 3. Note that the 
true crack size in this case is not c but c - b0. The 
consequent reduction in effectiveness of the pore as a 
strength-degrading flaw is negated somewhat by a 
stress-concentrating capacity. Accordingly, K~(c) is 
modified as follows 

K~(c) = ¢ ~ . ( c  - bo)'/~f(bo/C) (c >1 bo) (6) 

where the modifying functionf(bo/c) is [16] (neglecting 
free surface effects at c = b0) 

f(bo/c) = (1 + bo/c)~/2{1 + (1/2)(bo/c) 2 

"Jr- [ 3 / ( 7  - -  5Y)](bo/C)4}, 

(c />  b0) (7) 

with v Poisson's ratio. Note that at c >> b0, f -," 1, as 
required for Equation 7 to restore to Equation 3. As 
c decreases toward b0, on the other hand, f becomes 
increasingly greater than unity, indicative of the 
stress-concentration effect. Again, there are more 
sophisticated expressions forf(c/bo), but the numerical 
accuracy of Equation 7 is not central to our argument. 

For the microstructure-associated K~,(c) term we 
may retain Equation 5 above as for microcracks with- 
out T-curve history, but with b0 replacing Co (again in 
the approximation of negligible free surface effects at 
c = bo) 

T~(c) = O, (c < bo + d) (8a) 

L(c )  = (T~ - ro)[l - (1 -{(bo + c , )  

X [C 2 - -  ( b  0 -[- d)2]}/C[bo 2v c , )  2 - ( b  0 -[- 421t/2)3], 

(b0+  d <  c < b 0 +  c , )  (8b) 

T,,(c) = T~ - To, (c > g o + C , )  (8c) 

so that initial flaw size is again a factor. Again, we note 
that the function T~,(Ac), where Ac = c - b0, is not 
invariant. 

3. C a l c u l a t i o n  of  s t r e n g t h  - f l a w - s i z e  
re la t ions:  case s t u d y  on a 
p o l y c r y s t a l l i n e  a l u m i n a  

3 . 1 .  A m o d e l  a l u m i n a  m a t e r i a l  

Let us now investigate the above formulations for an 
alumina with relatively pronounced T-curve (R-curve) 
characteristics associated with the bridging mechan- 
ism. The appropriate parameters needed in order to 
specify T~, in Equation 3 for this material have been 
evaluated from the indentation-strength, am(P), data 
shown in Fig. 2 [12]. We note the distinct plateau 
in these data, indicative of the strong T-curve influ- 
ence referred to earlier. This plateau corresponds 
closely to the strength level for breaks from natu- 
ral flaws (including unindented specimens, and inden- 
ted specimens whose failures did not originate at 
the contact site). The material is polycrystalline with 
an average grain size 20ffm (Vistal grade, grain 
size 20/zm, < 0.1% impurity, Coors Ceramics Co., 
Colorado). It has a strong tendency to intergranular 
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Figure 2 Indentation-strength data for polycrystalline alumina 
(from [7]). Data points are means and standard deviations for 
breaks at indentation flaws formed at different loads. Hatched area 
at left is strength for breaks from natural flaws. Curve through data 
is fit used to deconvolute T-curve. 

fracture [7], so that the intrinsic toughness, To, ident- 
ifies with the grain-boundary fracture resistance. The 
specimens were broken in their as-fired state, so that 
extrinsic machining or polishing flaws might be 
avoided. However~ they contain some readily observ- 
able processing defects, microcracks up to 50 #m long 
( ~ 2 to 3 grain facet lengths) and occasional large pores 
up to 100 #m radius, examples of  which are shown in 
Fig. 3. These defects have been identified as the failure 
sites for breaks of  unindented specimens (or, at low 
contact loads, of  some indented specimens). 

Accordingly, we plot the applied stress Kd(c) func- 
tion and equilibrium T(c) function of Equation 1 b for 
the three flaw types, in Figs 4 to 6. The crack coor- 
dinate is plotted as c '/2 in these figures so that K~(c) for 
the microcrack-type flaws might be represented in the 
usual way as straight lines with slope proportional to 
applied stress. The T-curves have the same form for 
each of the different flaw types, with lateral displace- 
ments along the abscissa depending on the effective 
initial flaw size. The range in c over which the T-curve 
rises for this alumina may be taken as a measure of the 

large zone lengths (c - d) over which the stabilizing 
effect of the restraining forces can be realized in non- 
transforming ceramics. 

3.2. Mic roc racks :  full T - c u r v e  h i s to ry  
Consider first the T curve construction for microcrack- 
like flaws with full T-curve history, Fig. 4. In this case 
the T(c) function, Equation 4, is independent of  initial 
flaw size, c o . The actual critical condition for failure, 
Equation 2b, corresponding to the tangency condition 
aa = o m  = a3 in the diagram, also shows an indepen- 
dence on co, but only within the size range c; ~< Co ~< 
c;'. For the particular value of Co illustrated the flaw 
first "pops  in" unstably to the intersection point along 
the "loading line" at c~ a = ~2 on the rising branch of 
the T-curve, and thereafter grows stably up the curve 
until the critical unstable configuration c = Cm = CO' 
is reached at Oa = q~ = ~r3 (superscript P denoting 
plateau value). This may be regarded as an "activated" 
instability. For  Co < Co the instability condition 
cra = c% occurs at a higher applied stress level, e.g. 04; 
conversely, for Co > c'o' at lower cr a, e.g. o2 or (for very 
large co) o~. In these latter cases the instability is 
"spontaneous". With such a construction we can deter- 
mine (at least numerically) the functional dependence 
of o~ on Co over as wide a range of flaw size as we 
please. 

3.3. Microcracks: no previous T-curve history 
Consider next the construction for the same micro- 
crack-like flaws, but without T-curve history. As indi- 
cated above, the influence of initial flaw size co is now 
manifest as a shift in the T(c) function, Equation 5, 
along the c-axis, without any effect on the Kd (c) func- 
tion. We plot T(c) for c o = 0 (i.e. equivalent to flaw 
with full T-curve history, Equation 4), 50#m (corre- 
sponding to the approximate microcrack size actually 
observed, Section 3.1) and 500 #m (an extreme value 
approaching "macroscopic" crack dimensions) in 
Fig. 5. We include K~(c) loading lines only at the 
tangency configurations. Note now that even within 
the flaw size range Co ~< co ~< c~' ( a condition always 
well satisfied for the 50 and 500 pm flaws represented 
in Fig. 5) this tangency configuration is not independent 

F~gw'e 3 Micrographs of processing flaws in the same alumina as represented in Fig. 2: (a) microcracks (C), (b) large pore. Optical, 
transmitted light. 
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Figure 4 T-curve construction for alumina material in Fig. 2: micro- 
crack flaws with full T-curve history. Lines 1, 2, 3, 4 correspond to 
increasing G in K~(c) function, Equation 3. T(c) function from 
Equation 4 using parameters evaluated from Fig. 2 (T o = 1.73 MPa 
m 12, T~ = 4.08 MPam ~/2, d - 40#m, c. = 420~m [12]). Tangency 
condition at curve 3 defines strength G = am = 305 MPa for flaws 
with initial size in range c; ~< c o ~ cO'. 

of c0; i.e. the slope of the K,(c) line, which determines 
G = (~m, differs from curve to curve. Nevertheless, 
not only is the failure still activated, but the stable 
growth stage prior to final instability is actually 
enhanced (the tangency point lies further up the T- 
curve at the two larger values of Co). Accordingly, the 
tolerance characteristic imparted by the T-curve will 
be far from lost, especially where the range of the 
T-curve greatly exceeds the range of flaw sizes, as is 
the case for our material in Fig. 5. Again, it is a 
straightforward matter to determine the functional 
dependence of c% on co from this construction. 

3.4 .  Pores  
Finally, consider the construction for the pore-like 
flaws. Now both the T(c) function, Equation 8, and 
the K~(c) function, Equations 6 and 7, are dependent 
on the initial flaw size, b0. We plot these two functions 
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Figure 5 As for Fig. 4, but for microcrack flaws without T-curve 
history over initial evolution length, c 0. T(c) curves correspond to 
c 0 - 0 (reference curve from Fig. 4), 50 and 500/tin in Equation 5. 
Kd(c) lines are for tangency condition at each T-curve. 
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Figure 6 As for Fig. 5, but for pores of sizes b 0 = 50 and 500~m. 
T(c) curves from Equation 8, K~(c) curves from Equations 6 and 7. 
Note deviation of K,(c) below c ~'2 dependence (dashed lines) at 
small c, with zero cut-offat c = b 0. (Note also that Tand K~ crack 
functions are definable only at c /> b 0 for this defect.) 

for b0 = 50 and 5001Lm in Fig. 6 (cf. flaw sizes in 
Section 3.3); for K,(c) we include plots for equivalent 
cracks, b0 = co in Equation 3, as the dashed lines. The 
modifying effect of the effective reduction in crack 
length (from c to c - b0) associated with the pore is 
apparent as a pronounced deviation below a linear 
K~(c) plot, with cut-off at small crack extensions. 
However, the stabilizing effect of  the T-curve is suf- 
ficiently strong that this modification has little notice- 
able influence on the tangency condition, except at 
unusually large pore sizes (such as the 500 #m pore in 
Fig. 6). Again, the tangency configuration depends on 
the size of the history-dependent flaw. Note that for 
this tangency condition to represent the strength con- 
figuration it is necessary only that the pore should be 
circumscribed by a pre-existent annular starter crack, 
Ac, a few micrometres in dimension (i.e. considerably 
less than a grain facet length in our material), such 
that the requirement c; ~< b0 + Ac ~< c;' (cf. Fig. 4) is 
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Figure 7 Predicted strength plotted against initial flaw size (co for 
microcracks, b 0 for pores) for alumina material in Fig. 2: A, micro- 
cracks with full T-curve history; B, microcracks with T-curve influ- 
ence only after extension form c0; C, pores with T-curve influence 
after extension from b 0; D, microcracks with no influence of T-curve 
at any stage of growth. Note well-defined plateau level at aP1 is fully 
achieved only by flaw A. 
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satisfied. In the interest of conservative design we deal 
with this "worst case" in Section 3.5 below. 

3.5. S t r e n g t h  da ta  
Fig. 7 is the resultant plot of the strength against 
initial flaw size (Co or b0, whichever is appropriate) for 
the three flaw types discussed above, indicated as 
curves A, B and C, respectively. It is evident that the 
stabilizing influence of the T-curve has produced sig- 
nificant flaw tolerance over the size range 10 to 100/xm 
(encompassing the range observed in our alumina 
material, Section 3.1), even if somewhat less pro- 
nounced in B and C where bridging is not operative 
over the initial length. To put these results in perspec- 
tive, we may compare with the strength characteristics 
for a hypothetical ceramic with the same material 
constants as our alumina but without T-curve influ- 
ence over any of the crack area, extended as well as 
initial; these characteristics are obtained here by 
repeating the calculations for sharp microcracks at 
T~, = 0 (i.e. with a toughness T = To) and are plotted 
as curve D in Fig. 7. 

4. Discussion 
It has been shown that different flaw types in materials 
with pronounced T-curve (R-curve) characteristics 
exhibit the quality of "tolerance" in their associated 
strength behaviour, to a greater Or lesser extent 
depending on history and geometry. The greatest 
effect is predicted for those flaws that experience 
enhanced resistance over their entire area, initial as 
well as extended. A smaller, but by no means insignifi- 
cant, effect is predicted for those flaws that experience 
resistance over only their extended area. This latter 
point runs counter to traditional thought in the 
ceramics community where it is presumed that certain 
flaws, particularly processing defects, are inevitably 
susceptible to spontaneous failure from their initial 
configuration. Our results would suggest that in such 
T-curve materials as the alumina represented in Fig. 7, 
the improvements in strength gained by eliminating 
processing flaws much smaller than 100/xm (corre- 
sponding to a few bridge spacings) are likely to be 
minimal. 

We have considered just one material (polycrystal- 
line alumina), and just one mechanism (bridging), but 
the conclusions carry over to any material and any 
mechanism. It is the form, not the origin, of the T- 
curve that determines the scale of the effect. (We have 
recently refined the detailed form of the T-curve for 
bridging materials given in Equation 4, but these 
refinements in no way change the substance of our 
conclusions here.) Note that there are two features of 
the T-curve that need to be maximized for optimum 
tolerance, the magnitude T~ - To, and the range 
c,  d. For the alumina considered here the mag- 
nitude is modest, T~:/To ~ 2 to 3, but the range is 
relatively large, c , /d  ~ 10 (i.e. some tens of grain 
diameters). It is interesting to reflect that whereas 
most theoretical treatments of T-curve behaviour 
focus almost exclusively on the former, it is the latter 
that is the key contributing factor to the tolerance in 
our material, by virtue of its controlling influence on 

the scale of the flaw insensitivity range c~ ~< co ~< Co' 
(Fig. 4). Thus whereas many materials processors seek 
to optimize only the magnitude T~_/To, it is apparent 
that the range c, /d may be at least as important. 

The type of construction depicted in Figs 4 to 6 is 
just one of several possible ways [6] of representing the 
T-curve influence on flaw mechanics. One commonly 
used, alternative construction warrants special men- 
tion, because of an unwitting tendency for workers in 
the ceramics field to regard its scope of application as 
universal. We refer to the construction in which both 
T and Ka are plotted as a function of crack extension, 
Ac = c - co (or, for pores, Ac = c b0), instead of  
absolute crack size, c [17]. In that scheme a change in 
flaw size is represented as a shift in the intercept of the 
Kd(Ac) load line along the negative Ac coordinate, 
with an invariant T- or R-curve fixed at some origin 
along the abscissa. Such a construction might at first 
sight appear to be equivalent to that shown in Fig. 5 
(and 6) for defects without T-curve history over 
their initial area; there we simply displaced the origin 
of T instead of Ka. However, we recall from Sections 
2.3 (and 2.4) that the function T¢,(Ac) (inserting 
c = Ac + c0 in Equation 5, or c = Ac + b 0 in 
Equation 8) is not invariant with Co (or b0); i.e. the 
shape of the T-curve depends on the initial flaw size. 
The alternative construction is even more inapplicable 
to flaws with full T-curve history, such as the micro- 
crack system in Fig. 4, where the relative locations of 
the T and K~ origins are fixed regardless of co. For this 
last flaw type, constructions that shift the relative K~ 
origin will inevitably lead to a significant underestimate 
of the tolerance level (e.g. will predict a curve closer to 
B than to A in Fig. 7). It is clear that considerable care 
needs to be exercised in drawing conclusions regarding 
strength characteristics from the traditional R-curve 
representations. 

We have seen that the tolerance properties of a 
material with T-curve behaviour depend strongly on 
the flaw type. This dependence may be usefully 
explored in the indentation-strength test, by exami- 
ning the data set in the low-load region. Thus we note 
for our alumina material in Fig. 2 that the ~rm(P ) data 
tend asymptotically to the strength level for breaks 
from natural flaws; and, moreover, that this level 
itself corresponds (within experimental scatter) to the 

P in Fig. 7 for microcrack-type flaws plateau value am 
with full T-curve history. We conclude that the domi- 
nant natural flaws in our alumina must have evolved 
within the (bridging) T-curve field, and are therefore 
most likely to be the grain-facet microcracks of the kind 
shown in Fig. 3a. There is indeed evidence from in situ 
observations of polished alumina surfaces that such 
microcracks are the most prevalent source of natural 
failures [7, 18]. That the am(P) plot for the indentation 
flaws is asymptotic to rather than coincident with the 

P plateau is attributable to an additional driving O m 

force, proportional to P, associated with residual con- 
tact stresses [7, 10-12]. For flaws without complete 
T-curve history, e.g. the pores in Fig. 3b, the attendant 
reduction in strength values will manifest itself as a 
cut-off in the O'm(P ) plot in the low-load region. This 
indicates that such defects are not present in a sufficient 
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number of specimens to lower the mean strengths of 
our alumina significantly, but there are reported data 
for several other ceramics without strong T-curve 
characteristics (including aluminas) that exhibit 
strong cut-off behaviour [7]. It is these latter defect 
types that pose the greatest threat to degradation of 
strength properties. 

In conclusion, flaw insensitivity is a natural conse- 
quence of T-curve behaviour. The degree of insensi- 
tivity depends on such matters as history and geometry. 
The implications concerning materials design are pro- 
found. Nowhere is this more apparent than in ceramics 
processing strategy. Elimination of all flaws need not 
be the ultimate objective of materials fabrication. In 
this view it might not make good sense to pursue 
unlimited refinement of the microstructural makeup, 
particularly where the elements of that particular 
microstructure compensate by enhancing the T-curve. 
Moreover, the attendant crack stabilization afforded 
by the rising T-curve could be turned to advantage, to 
provide early warning of any impending failure [11]. It 
is clear that future decisions in ceramics design will 
inevitably require a proper understanding of the under- 
lying mechanics of the T-curve response, along with a 
complete characterization of the flaw types that are 
most likely to lead the material system to failure. 
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